If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+6y-600=0
a = 2; b = 6; c = -600;
Δ = b2-4ac
Δ = 62-4·2·(-600)
Δ = 4836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4836}=\sqrt{4*1209}=\sqrt{4}*\sqrt{1209}=2\sqrt{1209}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1209}}{2*2}=\frac{-6-2\sqrt{1209}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1209}}{2*2}=\frac{-6+2\sqrt{1209}}{4} $
| 16. 3y–(y+5)=9 | | 2x+3000=6000 | | -3z+8+2z=-12 | | 6=f–2 | | -x2-10x+24=0 | | F(x)=4/5x+2 | | 6^4x–3=5 | | 11(p-3)=8p | | y2= 2 | | 15r-17r=4 | | -6y+5=2(4-3y) | | 7x+29=14x-34 | | 40x+10(1.5×)=1600 | | 512z−6+15z=27z−5 | | 9x-3/4x=15 | | 3^{4x-5}-(1/27)^{2x+10}=0 | | -4(2n-5)=25-8n-5 | | 2/3(n-3)=9 | | 11x+44=12x | | 7/5y=7y+40 | | 7x-(2x+7)=38 | | 7x+29=14x-35 | | 2000-100x=20000 | | x+0.07x=44.94 | | Xx0.1=5 | | 4x+56=6x | | 8(c+1)=-24 | | -6(18x-9)+13x=361 | | 4(9x-9)=35 | | 2b+5÷3=-5 | | -24=8(c+1) | | Z=14-8i |